A primal-dual algorithm framework for convex saddle-point optimization
نویسندگان
چکیده
In this study, we introduce a primal-dual prediction-correction algorithm framework for convex optimization problems with known saddle-point structure. Our unified frame adds the proximal term with a positive definite weighting matrix. Moreover, different proximal parameters in the frame can derive some existing well-known algorithms and yield a class of new primal-dual schemes. We prove the convergence of the proposed frame from the perspective of proximal point algorithm-like contraction methods and variational inequalities approach. The convergence rate [Formula: see text] in the ergodic and nonergodic senses is also given, where t denotes the iteration number.
منابع مشابه
Communication-Efficient Distributed Primal-Dual Algorithm for Saddle Point Problem
Primal-dual algorithms, which are proposed to solve reformulated convex-concave saddle point problems, have been proven to be effective for solving a generic class of convex optimization problems, especially when the problems are ill-conditioned. However, the saddle point problem still lacks a distributed optimization framework where primal-dual algorithms can be employed. In this paper, we pro...
متن کاملAn Interior Point Algorithm for Solving Convex Quadratic Semidefinite Optimization Problems Using a New Kernel Function
In this paper, we consider convex quadratic semidefinite optimization problems and provide a primal-dual Interior Point Method (IPM) based on a new kernel function with a trigonometric barrier term. Iteration complexity of the algorithm is analyzed using some easy to check and mild conditions. Although our proposed kernel function is neither a Self-Regular (SR) fun...
متن کاملCanonical Primal-Dual Method for Solving Non-convex Minimization Problems
A new primal-dual algorithm is presented for solving a class of non-convex minimization problems. This algorithm is based on canonical duality theory such that the original non-convex minimization problem is first reformulated as a convex-concave saddle point optimization problem, which is then solved by a quadratically perturbed primal-dual method. Numerical examples are illustrated. Comparing...
متن کاملSubgradient Methods for Saddle-Point Problems
We consider computing the saddle points of a convex-concave function using subgradient methods. The existing literature on finding saddle points has mainly focused on establishing convergence properties of the generated iterates under some restrictive assumptions. In this paper, we propose a subgradient algorithm for generating approximate saddle points and provide per-iteration convergence rat...
متن کاملErgodic, primal convergence in dual subgradient schemes for convex programming, II: the case of inconsistent primal problems
Consider the utilization of a Lagrangian dual method which is convergent for consistent convex optimization problems. When it is used to solve an infeasible optimization problem, its inconsistency will then manifest itself through the divergence of the sequence of dual iterates. Will then the sequence of primal subproblem solutions still yield relevant information regarding the primal program? ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2017 شماره
صفحات -
تاریخ انتشار 2017